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Abstract

Response surface functions are often used as simple and inexpensive replacements for computationally
expensive computer models that simulate the behavior of a complex system over some parameter space.
“Progressive’ response surfaces are ones that are built up progressively as global information is added from
new sample points in the parameter space. As the response surfaces are globally upgraded based on new
information, heuristic indications of the convergence of the response surface approximation to the exact (fit-
ted) function can be inferred. Sampling points can be incrementally added in a structured fashion, or in an
unstructured fashion. Whatever the approach, at least in early stages of sampling it is usualy desirable to
sample the entire parameter space uniformly. At later stages of sampling, depending on the nature of the
guantity being resolved, it may be desirable to continue sampling uniformly over the entire parameter space
(Progressive response surfaces), or to switch to a focusing/economizing strategy of preferentially sampling
certain regions of the parameter space based on information gained in early stages of sampling (Adaptive
response surfaces). Here we consider Progressive response surfaces where a balanced indication of global
response over the parameter space is desired. We use avariant of Moving Least Squares to fit and interpolate
structured and unstructured point sets over the parameter space. On a 2-D test problem we compare response
surface accuracy for three incremental sampling methods: Progressive Lattice Sampling; Simple-Random
Monte Carlo; and Halton Quasi-Monte-Carlo sequences. We are ultimately after a system for constructing
efficiently upgradabl e response surface approximations with reliable error estimates.

I ntroduction and Background

L arge-scale optimization and uncertainty analyses are often made feasible through the use
of response surfaces as surrogates for computational models that may not be directly
employable because of prohibitive expense and/or noise properties and/or coupling diffi-
culties in multidisciplinary analysis. Examples of response surface usage to facilitate
large-scale optimization and uncertainty analyses are cited in Roux et al. (1996), Unal et
al. (1996), and Venter et al. (1996).

Two issues that arise when using response surface approximations (RSA) are accuracy and
the cost of procuring the data samples needed to create the RSA. With a sufficiently flexi-
ble global fitting/interpolating function over the parameter space, response surface accu-
racy generally increases as the number of data points increases (if the points are
appropriately placed throughout the parameter space), until the essential character of the
function is effectively mapped out. Thereafter, it is not cost effective to continue adding
samples. Since a single high-fidelity physics ssimulation (i.e., one data sample) can take
many hours to compute, it is desirable to minimize the number of simulations that are
needed to construct an accurate response surface.

For our purposes hereit is assumed that: 1) the computer model is relatively expensive to
evaluate; 2) the parameter space is a unit hypercube or can be accurately and inexpen-
sively mapped into one; 3) the sampled or “target” function is a continuous, deterministic
function over the parameter space; 4) reasonably general, arbitrary target functions are to
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be fitted; and 5) approximate response values are desired over the entire parameter space
or subspace being considered —i.e., for global and local optimization or mapping inputs to
outputs in uncertainty propagation.

Given these specifications, Romero et a. (2000) examined several formulations for con-
structing progressive response surfaces built on Progressive L attice Sampling (PLS) incre-
mental sampling designs. PLS is a paradigm for structured uniform sampling of a
hypercube parameter space by placing and incrementally adding sets of samples such that
all samples are efficiently leveraged as the design progresses from one level to the next.
Figures 1 - 4 show successive PLS levels in 2-dimensions. (Also shown for comparison
are point sets from classical simple-random Monte Carlo sampling -using three different
seeds for the random-number generator, and from Halton “quasi- Monte Carlo” low-dis-
crepancy sequences (see, e.g., Owen, 2003) where we have used two different sets of
prime-number bases to create the two sets of Halton samples.)

PL S endeavors to preserve uniformity of sampling coverage over the parameter space in
the various stages or levels of the incremental experimental design. Uniform coverage
over the parameter space is desirable for general response surface construction because
this reduces the redundancy or marginalization of new information from added samples.
This is a basic concept of upgradable quadrature methods (Patterson-1968, and Genz &
Malik - 1983).

PL S builds knowledge by reducing global knowledge deficit over the parameter space. It
does not attempt to build specific or targeted knowledge by building on previous informa-
tion in the manner of “adaptive’” sampling, which efficiently maximizes knowledge over
particular regions of the parameter space. Thus, PLS designs select sample locations
strictly on geometric principles such that new samples are intended to be “maximally far”
from each other and from all other existing samples at each level of sampling. Thus, global
uniformity of coverage is maintained at each level as the scheme progresses.

The arrangement of samples in each PLS level allows the parameter space to be subdi-
vided into a regular pattern of adjacent polygons, which for two parameter space dimen-
sions results in triangular and quadrilateral 2-D finite elements (FES) yielding linear to
guadratic polynomial interpolation over each element (see Romero & Bankston, 1998).
The collection of all the elements together creates a C*-continuous global function over
the parameter space. As such, the global RSA has considerable freedom to locally con-
form to the data values of the sample points (see Figures 6 - 8). A mathematical analysis
(Strang & Fix, 1973) of finite element interpolation of this nature shows that for a continu-
ous and infinitely differentiable function over the parameter space, the domain integral of
the pointwise absolute error goes to zero as the spacing between samples goes to zero.
This analysis can be applied to the FE/PLS method. Hence, in the limit of infinite sam-
pling, FE/PL S response surfaces converge everywhere in the domain to target functionsin
this class (though the convergence rate is generally not uniform over the domain). There-
fore the FE/PLS method provides a convergent reference against which the accuracy of
other progressive response surface methods can be compared.

Upon upgrading from one level to the next of the PLS design, the resulting change in the
response surface at any point in the domain is a heuristic indicator of the magnitude of the
local error in the response surface approximation. When the incremental change goes to
zero, thistentatively indicates that the local approximation error has become negligible.
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SRS9-seed1 SRS9-seed? SRS9-seed3

Halton9-2,3 Halton9-5,7 PLS Leveld4

Figure 1. 9-point sample sets on a 2-D unit Hypercube from three types of incremental
sampling methods: A) Top Row— SRS Monte Carlo with three different initial
seeds; and B) Bottom Row- base 2,3 and 5,7 Halton sets, and PLS set.

SRS13-seed1 SRS13-seed? SRS13-seed3
Halton13-2,3 Halton13-5,7 PLS-Level5

Figure 2. 13-point sample sets on a 2-D unit Hcube from three types of incremental sam-
pling methods: A) Top Row— SRS Monte Carlo with three different initial seeds;
and B) Bottom Row- base 2,3 and 5,7 Halton sets, and PLS set.
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SRS25-seed1 SRS25-seed?2 SRS25-seed3
Halton25-2,3 Halton25-5,7 PLS-Level6

Figure 3. 25-point sample sets on a 2-D unit Hcube from three types of incremental sam-
pling methods: A) Top Row— SRS Monte Carlo with three different initial seeds;
and B) Bottom Row- base 2,3 and 5,7 Halton sets, and PLS set.

SRHA1-seedl SRSA41-seed?2 SR$A41-seed3
* .o.‘O °.. * K4 . * . ¢ . .
o. . . . o .:...... . ‘. . .o
Halton41-2,3 Halton41-5,7 PLS Level7

Figure 4. 41-point sample sets on a 2-D unit Hcube from three types of incremental sam-
pling methods: A) Top Row— SRS Monte Carlo with three different initial seeds;
and B) Bottom Row- base 2,3 and 5,7 Halton sets, and PLS set.
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The advantage of the structured PL S approach isthat it is thought to be globally optimal or
nearly optimal in that, as samples are added in attaining each new Lattice Sampling
“Level”, the spacing of samples throughout the parameter space remains uniform, or
nearly so, given the constraint of previous sample locations. The locations of previous
samples are respected because it is desired to fully leverage them (with minimal marginal-
ization) as new samples are added.

This would appear to be the most efficient way (following
the precedent of upgradable quadrature methods) to pro-
gressively build up aresponse surface. It may be that at any
given level if complete freedom is allowed where the sam-
ples can be placed, then these may be arrangeable over the
parameter space with better uniformity than PLS provides.
For example, Romero et a. (2003) find that this appears to
occur sometimes with Latin Hypercube Sampling and Cen-
troidal Voronoi Tessellation —depending on the random
number generator initial seed, number of samples, etc.
However, these are non-incremental sampling methods;
augmenting the number of samples would imply a com-
pletely different sampling of the parameter space at al new
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ating function. This is more expensive than an incremental ("generating

sampling method like PLS, which at each new stage costs function).

only theincrement of Y new samples (to be added to the original X for atotal of X+Y uni-
formly dispersed samples).

A strong disadvantage of PLS, however, is that its structured experimental-design sam-
pling nature allows only a quantized increment Y to be added to an existing PLS level
(point set) to graduate to a new level. Hence, there is a constraint on the number of sam-
ples that can be added and still maintaining as uniform a filling of the hypercube as the
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Figure 6. Successive response surface approximations to the exact generating func-
tion by finite-element interpolation of PLS designs: (A) - Level 1 having 3
samples; (B) - Level 3(4) having 9 samples; (C) - Level 6 having 25 samples.
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scheme is capable of. In particular, this quantized incremental cost Y scales increasingly
quickly asthe PLS level and dimension of the parameter space increase.

Other, incremental sampling methods exist that are unstructured (non-quantized) that
don’'t have the hard cost-scaling of PLS. Some popular unstructured incremental-sampling
methods are the Halton “quasi- Monte Carlo” low-discrepancy sequence method (Owen,
2003), and Simple-Random Sampling (SRS) Monte Carlo. These dlow Y as small as 1
without creating a prejudiced imbalance in the global coverageffilling of the parameter
space. Hence, regardless of the dimension of the space and the stage of sampling, we
could incrementally add, say, 50% more samples at a time in monitoring the convergence
of the response surface results. If the sampling budget is reached before adequate conver-
gence is established, then the final results will still be based on a point placement that is
characteristic of the most uniform sample placement the method is capable of producing.

The point placement of Halton sampling appears characteristically more uniform over the
parameter space than that of SRS, as can be seen in Figures 1 - 4. (We assert this based
only on graphical appearance, not on formal measures of uniformity. Burkhardt et al.
(2004) describe reliable metrics of point uniformity in hypercubes, but these have not been
applied here.) In turn, the uniformity of PLS appears to be better than that of Halton. In the
next section we will confirm that better sampling uniformity over the parameter space gen-
erally correlates with better response surface accuracy.

Given a set of sampling points over a parameter space, the quality of the response surface
approximation (RSA) also depends on the particular method used to fit and interpolate the
data. We now turn to consideration of data fitting methods to interpolate and extrapolate
the sample data. Finite-element interpolation of sample datafor general unstructured point
placement and arbitrary numbers of samplesin arbitrary dimensionsis a difficult prospect.
It is not immediately obvious how anything but linear tetrahedral (simplex) elements could
readily be used, thereby sacrificing any higher-order convergence potential in the piece-
wise-linear interpolation scheme. Extrapolation procedures are also not immediately obvi-
ous, asthisis not normally encountered in the Finite Element Method.

Four general datafitting and interpolation/extrapol ation methods that can work with struc-
tured or unstructured progressive sampling schemes have been evaluated by the authors.
These are global polynomial regression and kriging (Romero, et a., 2000, and Krishna-
murthy & Romero, 2002); moving least squares (Krishnamurthy & Romero, 2002, and
Romero et a., 2003); and Radial Basis Function methods (Krishnamurthy, 2003). Though
our experience is very limited, of these, MLS appears to present a good baance of
response surface accuracy, smoothness, robustness, and ease of use. Therefore, we use
MLS in the next section to generate response surfaces from the 2-D sample setsin Figures
1-4.

2-D Example Problem for Examining Performance of Progressive Response
Surfaces

Figure 5 plots a 2-D model function used to study the effect of sample point addition,
sample placement scheme, and interpolation method on response surface accuracy. The
value of the multimodal function in Figure 5 is defined as:

Y(pl,p2)=[0.8r +0.35sin %m%g][ 1.5sin(1.36)] (EQ1)
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where » = /\/(pl) +(p2 and 6 = arctanqvll:|

Exact values (samples) of this function are obtained at 9, 13, 25, and 41 points shown in
Figures1- 4 for the PLS, SRS, and Halton incremental sampling methods. These numbers
of samples correspond to PLS levels 4 - 7 in 2-D. (The high deterministic uniformity of
the PL S sets provides a good standard to compare the other point sets against.)

onthedomaino<pi<i1,0<p2<1.

The point datais then fitted and interpolated with Moving Least Squares (MLS). The par-
ticular implementation of MLS we use is described in Krishnamurthy & Romero (2002).
The quintic weight function described in the reference is used here to give C2 smoothe-
ness to the MLS global interpolation function over the 2-D parameter space. A quadratic
polynomial basis function is used for local interpolation, which requires at least
(M+1)(M+2)/2 sample points (6 for M=2 dimensions) within a given evaluation point’s
local radius of influence. An optimal local radius of influence is calculated and used for
each different point set, so that this element of fitting error is minimized in this study.

In order to assess the response surface error due to the fitting method (as opposed to
the number and location of sample points), the finite element interpolation method of
Romero & Bangston (1998) is aso used to fit the PLS data sets. Figure 6 shows FE/PLS
response surfaces for sets of 3, 9, and 25 samples. This illustrates the convergence of the
progressive response surface to the target function as samples are added from the PLS
design.

To examine the fitting performance of the progressive response surfaces, a simple
measure of quality of global fit over the parameter spaceis used:

441
> |exact; —predicted|

approximate spatial average absolute error = = vy, (EQ 2
where exact and predicted values in the summation come from respective evaluation of the
exact function and the particular response surface approximation at 441 equally spaced
points on a 21x21 square grid overlaid on the unit-square domain. This measure is an
expedient approximation to the global average integrated absolute error over the domain,
which would require a much more involved calculation.

Performance of Progressive Response Surface Methods on 2-D Problem

Figure 7 presents the response surface errors for the various sampling schemes, numbers
of samples, and interpolation methods. All sampling methods yield a reduction of global
fitting error as the number of samples increases in progressing to each new stage of the
response surface.

At every population level (9, 13, 25, 41 samples), SRS-based sample placement performs
worst (for al three of the random-number-generator initial seeds tried). This is a general
reflection of the less uniformity with which the points are placed in the domain, as Figures
1 - 4 revea. The more uniform Halton placement (for both the 2,3 and 5,7 prime bases for
pl,p2 coordinates) performs significantly better than SRS in general, but till significantly
less well than the deterministically uniform PLS point placement. The effect of point
placement is substantial; at a population level the error difference between the best and
worst point placements is roughly equal to the error difference between that and the next
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population level. That is, using a better point-placement scheme can substantially reduce
the number of samples (and evaluation cost) needed to achieve a given level of response
surface fitting error.

Among the incremental sampling methods (which are the most cost efficient type of sam-
plers for progressive response surface construction), of the ones tried here Halton appears
to be the best choice in general. Being one-at-a-time incremental sampling methods, Hal-
ton and SRS don’t have the hard cost-scaling of PLS (where only quantized increments are
allowed), and Halton point uniformity is much better than SRS uniformity in general.

With regard to interpolation methods, both FE and MLS are applied to the PLS sets for
comparison. Which interpolator is used has relatively less effect here than the number and
placement of sample points, but the effect is still non-negligible at 25 and 41 points.
Though FE interpolation generally yields smaller error than MLS, this is not aways true
(e.g., thedatafor 13 samples). Futhermore, FE is not currently a viable choice for unstruc-
tured Halton sampling, which is the most viable of the incremental sampling methods con-
Sidered here.

Sampling types vs. average error
0.25
—+ SRS1
02 = SRS2
2 0151 ~+ SRS3
PLS
HL ~+ PLS-FE
0.05 - -0~ Halton2-3
— Haltond-/
0 T T T T
0 10 20 30 40 50
Number of Samples

Figure 7. Convergence of progressive response surfaces to generating function
as various sampling methods add samples. (Spatially averaged absolute
error is plotted.)

Closing

It can be very difficult to determine when a particular sasmpling design and interpola-
tion scheme sufficiently resolve afunction, yet this must be done if the response surfaceis
to be used as an effective inexpensive replacement for the actual function. Monitoring con-
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vergence heuristics of progressive convergent response surface approximations can helpin
this regard, and the Halton/MLS combination initially appears to be a generally viable
approach for generating such response surfaces. However, there are still some subtle
issues with both of these technologies that have to be characterized and addressed before
they can be ready for general robust implementation. This will be the subject of future
development, testing, and evaluation of the Halton/MLS method (and any other viable
alternativesidentified in the future).
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